
Final Report: The
Fully-Synchronized Synthesizer

(FSS) Interface Prototype

Computer Design Laboratory ECE 3710
Fall 2021

The University of Utah

Jacob Peterson Brady Hartog Isabella Gilman Nate Hansen
Computer Engineering 2022 Computer Engineering 2022 Computer Engineering 2023 Computer Engineering 2023

University of Utah University of Utah University of Utah University of Utah
Salt Lake City, UT Salt Lake City, UT Salt Lake City, UT Salt Lake City, UT

Abstract—We present the design and implementation of a
small-scale prototype for a fully-synchronized synthesizer (“FSS”)
interface. The prototype is designed to address a major drawback
of contemporary musical synthesizers. As a proof of concept for
an innovative user interface, the prototype casts a vision for a
more versatile and powerful synthesizer for the musical artists
of tomorrow. Pursuant to the course objectives of ECE 3710, the
principal component of the prototype is an Intel Cyclone V FPGA.
This report chronicles our process of programming and interfacing
with the FPGA as well as crafting a hardware system to deliver a
prototype with a highly intentional and interactive user experience.

I. INTRODUCTION

In 1978 the music technology firm Sequential Circuits intro-
duced the Prophet-5 musical synthesizer. Prophet-5 was among
the world’s first fully-programmable synthesizers, meaning that
every controllable parameter could be stored in user-defined
programs. Full programmability was a major milestone in
the history of the synthesizer, and Prophet-5 would set the
precedent of synthesizer design for decades to come.

In fact, over 40 years later, Prophet-5 remains the
archetype of modern hardware synthesizers. Whereas the fully-
programmable paradigm of Prophet-5 is highly useful, it suffers
a major drawback. Fig. 1 illustrates the drawback. In the fully-
programmable paradigm, each parameter has both a physical
value and an active value. The physical value is the value
indicated by the position of the dial. The active value is set
either by: 1) changing the position of the dial (in which case
it is the same as the physical value); or by 2) recalling a user-
defined program. Naturally, recalled values do not necessarily
match—and in practice seldom do match—the physical values
of the dials. We say that parameters controlled in this way are
unsynchronized.

Fig. 1. The drawback with traditional, analog level meters. The physical and
active values are out of sync!

The drawback described above assumes the use of traditional,
analog level meters as shown in Fig. 1. Fig. 2 depicts a
proposed alternative to the traditional level meter. This level
meter consists of an LED ring display with digital control. By
leveraging digital control, the level meter can display the active
value of the parameter at all times, whether it is set by changing
the dial or by recalling a program. We say that a parameter
controlled in this way is synchronized.

We envision a musical synthesizer for which every parameter
on the control panel is synchronized; such would be a fully-
synchronized synthesizer (“FSS”).

In this report we present the design and implementation
of a small-scale prototype for an FSS interface (Fig. 3) with
respect to the learning objectives of ECE 3710. We believe our
prototype is a successful proof of concept for the FSS interface
as well as a clear, articulate, and creative application of our

Fig. 2. The proposed digital level meter to implement synchronized parameters.

computer engineering skills to date. We hope you enjoy our
presentation of the FSS interface prototype.

Fig. 3. The FSS prototype.

II. OVERVIEW

The following is an overview of the user-facing functionality
of the FSS prototype.

The FSS prototype has three synchronized parameters and
three user-defined programs. The objective of the device is to
demonstrate that all three parameters can be stored in each of
the programs and recalled on demand.

Turning any of the parameter dials will change the value in
its ring display by a corresponding amount. As soon as any
parameter is changed beyond the programmed state, the save
button LED turns on. The user may save their changes by press-
ing the save button, whereupon the save button LED turns off.
The user may recall programs by pressing the corresponding
program buttons.

The play/pause button is intended for auxiliary functionality,
such as playing a sound if the FSS prototype is connected to an
audio engine. In our implementation, the play/pause button is
used to trigger animations of the display elements for aesthetic
purposes.

III. HARDWARE

The hardware assembly of our device consists of 3 main
components: A DE1-SoC Cyclone V FPGA board, a small
breakout box for power supply and I2C bus interfacing, and our
FSS prototype device. These components and their connections
can be seen at a high level in Fig. 4.

A. FPGA Board

The FPGA device drives all of the logical control for the FSS
device. This is accomplished by instantiating a single module of
our CR16 processor, and adding to that a set of peripheral mod-
ules. The modules that are peripheral to CR16 are responsible
for allowing the assembly code access to important device data
such as the state of the buttons and rotary encoders, the state of
the LED indicators, and a 48-bit microsecond counter for I2C
timing. All of these modules were coded in SystemVerilog HDL
and are available within the GitHub repository “FSSPrototype.”
The FPGA acts as an I2C master, where GPIO pins 1 and 2
are the SCL and SDA lines respectively, as shown in Fig. 5
The FPGA is also attached to a common ground shared by
the FSS prototype device and the breakout box. In order for
the device to function, the FPGA is programmed with the FSS
prototype Verilog modules (fss_top.sv being the top-level
module), the CompactRISC16 (CR16) Verilog modules, and a
block RAM (BRAM) initialization file containing the machine
code of our firmware.

The FPGA device allowed our team to employ a variety of
useful testing methods, such as displaying data from BRAM
on the bank of seven-segment displays with the slide switches
acting as the BRAM address, assigning an FPGA button to a
global reset, and testing I2C communication. Our device relies
on the internal 50MHz clock on the FPGA board, but we could
also slow down runtime execution during debugging by tying
the clock signal to a push button. Successful design and testing
of this project relied on substantial interfacing with the FPGA.

B. Breakout Box

The breakout box is responsible for powering the FSS
prototype interface as well as forwarding the I2C signal coming
from the FPGA to the port expander chips on the main PCB.
The housing of the breakout box contains a USB type-A
receptacle, a USB type-B receptacle, 2 male pin headers, a buck
converter, and a rocker switch. The USB type-B receptacle is
responsible for receiving power from the USB cable voltage
bus and delivering it to the breakout PCB and then the main
PCB. This power cable supplies 5V to the board from a DC
power source, which is generally a wall adapter plugged into
a standard outlet. From here the voltage is stepped down to
3.3V by a DC-DC buck converter contained within the breakout
box to ensure the main PCB is receiving an operating voltage
of 3.3V. Then, the USB type-A cable supplies this power to
the main PCB board. To make control of power simple, the
breakout box also includes a rocker switch that toggles the
power on and off.

The control logic sent by the FPGA is also routed through
the breakout box. The FPGA drives the I2C bus lines, both SDA
(serial data) and SCL (serial clock), using the GPIO PMOD pin
headers on the FPGA board with an open-drain configuration.
Breadboard wires then connect the two bus lines from the FPGA
board to the breakout box, and the breakout PCB routes the two
bus lines to the USB type-A cable which is then connected
to the FSS prototype. The USB type-A cable’s D+ and D-
differential data lines are adapted to be the SCL and SDA
signals of the I2C bus respectively.

The breakout board schematic and PCB layout are shown in
Figures 6 and 7 respectively.

C. FSS PCB

The FSS prototype’s PCB is responsible for all the electronic
circuitry on the device. In this document, we refer to this PCB
as the “main” PCB and it resides within the prototype’s housing.
We wanted to preserve the beauty factor of our FSS prototype,
so instead of using many breadboard wires to interface the main
PCB to the FPGA board, we opted to use a single USB cable
that is inserted into the back of the prototype’s housing. A
USB Mini type-B receptacle connects this USB cable from the
breakout box to the main board, and is used to provide power
throughout the board and, as mentioned previously, adapts the
D+ and D- differential data lines as the SCL and SDA signals
of the I2C bus. All communication from the FPGA to the
main board must take place serially since it’s impractical to
drive the board’s components individually using the PMOD
pin headers on the FPGA board. So, to drive the board’s
components serially, the GMSB0522102Y7EU 8-bit I/O port
expander IC is used. Two of these port expander chips in
conjunction provide complete I/O to the entirety of the main
PCB and the serial communication protocol to interface with
them is I2C in standard mode (100 kHz clock speed). This port
expander chip is quasi-bidirectional, meaning that there is no
configuration register to specify whether a port is an input or an
output. Instead, to use a port as an input, the port is driven high
and can be pulled low by an external component. 5 tactile push
buttons with a pull-up configuration are connected to one of the
I/O port expander chips. Additionally, there are 3 quadrature-
encoded, mechanical rotary encoders each with two channels —
A and B. The individual channels use a pull-up configuration
and are connected to one of the I/O port expander chips. These
two channels in conjunction make up the quadrature-encoded
output of these rotary encoders.

The FSS prototype contains 62 LEDs with an amber hue.
There are 19 LEDs in each of the 3 ring displays and 1 LED for
each of the 5 button indicator lights. To drive all of these LEDs
using minimal I/O, 4 of the STP16CPC05MTR 16-bit, latching,
shift-register LED driver ICs are used. Each driver contains the
following pins: SDI (serial data in) which the input to the shift
register, SDO (serial data out) which contains the bit shifted out
of the shift register, CLK (clock) which synchronizes SDI and
SDO, LE (latch enable) which latches the driver output when
asserted, OE (output enable) which is the active-low enable pin,
and R-EXT which controls the chip’s internal current limiter to
provide a constant-current source to the LEDs. These 4 LED
driver ICs on the main board are daisy-chained together and
the first driver in the chain has its SDI pin connected to one
of the ports on the I/O port expander chip. Additionally, one of
the I/O port expander chips drives all 4 CLK and LE signals of
the LED drivers so that they are all synchronized.

The SDA and SCL lines of the I2C bus are short-circuit
protected using 300Ω series resistors. This resistance is low
enough that it does not affect the I2C bus capacitance, which is
limited to 400 picofarads in standard mode. Additionally, the 6
ft. braided USB cable used to interface with the main board is
shielded, has a low resistance, and a low parasitic capacitance,
so the I2C bus timing requirements are met without an issue.
As part of the I2C specification, the SDA and SCL lines are
directly connected to 3.3V using two 2kΩ pull-up resistors.

As another precaution, series resistors are used to protect
against accidental short-circuits on the pull-up/pull-down inputs
of the I/O port expander chip. In the event that a quasi-

Fig. 4. High level block diagram of the full FSS hardware assembly.

Fig. 5. GPIO pin diagram as obtained from the Cyclone V user manual with mappings added [4].

bidirectional port that is treated as an input is accidentally
driven low via I2C, a short-circuit can occur if a pull-down input
configuration is pulled high — directly connecting a logical
high to a logical low with no series resistance.

The ECAD tool used to create the schematics and PCB lay-
outs is called easyEDA, an online cloud-based PCB design tool.
The Gerber files were exported from easyEDA and uploaded to
JLCPCB, our PCB fabricator of choice. This process was done
for both the main board and the breakout board schematic and
PCB. We also ordered an SMT stencil for our main PCB which
allowed us to apply solder paste to the SMD pads efficiently.
We then placed the various SMD components onto the solder
paste areas accordingly and reflowed the components using a
reflow oven.

The main board schematic and PCB layout are shown in
Figures 8 and 9 respectively. Additionally, Figure 10 shows a
picture of the final PCB assembly.

D. FSS Housing

For the external housing, our team decided to go with
a minimal design. The final assembly was constructed from
stacked layers of acrylic panels, providing a solid structure
with pleasing weight. The top layer was a sheet of translucent
black acrylic, which allowed for our LED to shine through
in a low amber color. Veneer surrounds the perimeter of the
housing, giving a more natural feeling to the box. Finally, the
knobs and control buttons were constructed out of acrylic to
give them that same weight and sleek feeling the rest of the

https://easyeda.com

A A

1

1

2

2

TITLE:
FSS Breakout Board REV: 1.0

Date: 2021-11-04

Sheet: 1/1
Drawn By: Group 2

Company: UofU ECE 3710

3.3V Out -
OUT-

1

3.3V Out +
OUT+

15V In +
IN+

1

5V In -
IN-

1

SCL
SDA

SCL
SDA

IN-

IN+ OUT+

OUT-

USB Type A
USB-A

VCC
1

D-
2

D+
3

GND
4

MH1
MH1

MH2
MH2

90-degree Pin Header
I2C

1
1

2
2

Mini Rocker Switch 1941.1103
SW1

1
1

2
2

USB Type B
USB-B

VCC
1

D-
2

D+
3

GND
4

MH1
MH1

MH2
MH2

Fig. 6. Schematic of Breakout PCB.

Fig. 7. Layout of Breakout PCB.

synthesizer gives. This design is minimal, but gives the user a
sense of quality. By following a design process that takes the
user’s needs into account, we were able to implement a device
that is equal in both form and function. The final result has the
quality and professional feeling that is geared toward musicians
and producers.

The internals of the FSS housing can be seen in Figure 8.
This picture is of an older version where we had used plywood
for the internal layers, before we replaced them with acrylic.

IV. CR16 PROCESSOR

The details of our CR16 processor are contained in the
previous lab reports, but for the purposes of the FSS prototype’s
interface firmware, it would be enlightening to review some of

the aspects of our CR16 ISA that were implemented specifically
to abstract away some of the complexity in writing assembly
code. Although the processor we designed is mostly equipped
for RISC instructions, these added instructions may have more
of a CISC “feel” to them. The FSM controller of the CR16
CPU manages the fetch-decode-execute procedure for these
instructions in the same way as the other instructions. Most
of these instructions could be replaced by a series of RISC
instructions, but we saved clock cycles by implementing their
behavior into the CPU FSM. Each of the following instructions
is accompanied by an explanation for their implementation:

1) LOADX/STOREX: These instructions are external LOAD
and STORE instructions which will be capable of loading
and storing data directly into an external memory bank.

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

TITLE:
FSS Main Board REV: 1.0

Date: 2021-11-04

Sheet: 1/1
Drawn By: Group 2

Company: UofU ECE 3710

LED
LED1

LED
LED2

LED
LED3

LED
LED4

LED
LED5

LED
LED6

LED
LED7

LED
LED8

LED
LED9

LED
LED10

LED
LED11

LED
LED12

LED
LED13

LED
LED14

LED
LED15

LED
LED16

LED
LED17

LED
LED18

LED
LED19

LED
LED20

LED
LED21

LED
LED22

LED
LED23

LED
LED24

LED
LED25

LED
LED26

LED
LED27

LED
LED28

LED
LED29

LED
LED30

LED
LED31

LED
LED32

LED
LED33

LED
LED34

LED
LED35

LED
LED36

LED
LED37

LED
LED38

LED
LED39

LED
LED40

LED
LED41

LED
LED42

LED
LED43

LED
LED44

LED
LED45

LED
LED46

LED
LED47

LED
LED48

LED
LED49

LED
LED50

LED
LED51

LED
LED52

LED
LED53

LED
LED54

LED
LED55

LED
LED56

LED
LED57

ProgramSave
LED58

Program1
LED59

Program2
LED60

Program3
LED61

PlayPause
LED62

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

VCC

VCC

VCC

VCC

PEC11R-4215F-N0024
SW1

A

B
C

4
5

10K
R5

10K
R6

GND

VCC

VCC

GND

10K
R11

10K
R12

PEC11R-4215F-N0024
SW2

A

B
C

4
5

VCC

GND

10K
R15

10K
R16

PEC11R-4215F-N0024
SW3

A

B
C

4
5

VCC

10K
R17

10K
R18

10K
R19

10K
R20

10K
R21

GND

PCF8574AT/3,518
U10

A01
A12
A23
P04
P15
P26
P37
VSS8 P4 9P5 10P6 11P7 12#INT 13SCL 14SDA 15VDD 16

PCF8574AT/3,518
U11

A01
A12
A23
P04
P15
P26
P37
VSS8 P4 9P5 10P6 11P7 12#INT 13SCL 14SDA 15VDD 16

VCC

VCC

VCC VCC

GNDGND

10K
R1

10K
R2

10K
R3

10K
R4

1K
R22

1K
R23

1K
R24

1K
R25

VCC

GND

SDA
SCL

0.1uF
C1

GND

2K
R26

2K
R27

330
R28

330
R29

SDA

SCL

SCL
SDA

LED Driver
U1

GND1

SDI2

CLK3

LE4

OUT05

OUT16

OUT27

OUT38

OUT49

OUT510

OUT611

OUT712 OUT8 13

OUT9 14

OUT10 15

OUT11 16

OUT12 17

OUT13 18

OUT14 19

OUT15 20

OE 21

SDO 22

R-EXT 23

VDD 24

LED Driver
U2

GND1

SDI2

CLK3

LE4

OUT05

OUT16

OUT27

OUT38

OUT49

OUT510

OUT611

OUT712 OUT8 13

OUT9 14

OUT10 15

OUT11 16

OUT12 17

OUT13 18

OUT14 19

OUT15 20

OE 21

SDO 22

R-EXT 23

VDD 24

LED Driver
U3

GND1

SDI2

CLK3

LE4

OUT05

OUT16

OUT27

OUT38

OUT49

OUT510

OUT611

OUT712 OUT8 13

OUT9 14

OUT10 15

OUT11 16

OUT12 17

OUT13 18

OUT14 19

OUT15 20

OE 21

SDO 22

R-EXT 23

VDD 24

LED Driver
U4

GND1

SDI2

CLK3

LE4

OUT05

OUT16

OUT27

OUT38

OUT49

OUT510

OUT611

OUT712 OUT8 13

OUT9 14

OUT10 15

OUT11 16

OUT12 17

OUT13 18

OUT14 19

OUT15 20

OE 21

SDO 22

R-EXT 23

VDD 24

ProgramSave
U5

A
1

B
2

Program1
U6

A
1

B
2

Program2
U7

A
1

B
2

Program3
U8

A
1

B
2

PlayPause
U9

A
1

B
2

USB Type Mini B
USB1

VCC 1
D- 2

D+ 3
ID 4

GND 5

Fig. 8. Schematic of main PCB.

Fig. 9. Layout of main PCB.

Fig. 10. Picture of main PCB assembly.

Fig. 11. Picture of FSS housing backside.

This was implemented for two reasons. We want LOAD
and STORE to have access to the whole address space
of BRAM, and we want to be able to communicate in
a modular way with GPIO registers that are sending and
receiving information from the FSS GPIO port expanders
over I2C. These instructions also allow us to read a value
from the microsecond counter, which is a separate Verilog
module we created to assist with timing. Details on these
modules are explained in the “Peripheral Interfacing”
section.

2) CALL/CALLD/RET instead of JAL/JUC: Our firmware
is quite complex, and, for ease of development, we

planned to push and pop instruction addresses on and off
the stack to manage nested subroutine calls. It seems to
make more logical sense to encapsulate the management
of the return address within the instruction. The CALL and
CALLD (CALL with displacement) instructions manage
the return address implicitly, and RET will be an uncon-
ditional jump to the previously calculated return address,
which is popped off the stack. This way, we don’t need
a dedicated register for the return address of a subroutine
call.

3) PUSH/POP: These instructions encapsulate the behavior
of modifying the stack pointer and loading/storing data

on the stack. In order for them to work properly, the first
few instructions of any program that is run on the CR16
processor must assign an address to the stack pointer
register rsp. By convention, the stack starts at the highest
memory address and grows downward. The stack “lives”
in the same file as the code, so its capacity is between
the EOF and the final machine-encoded instruction. Our
processor has no kernel, and therefore has no notion of
segmentation faults, so stack overflow has unintended and
sometimes sneaky consequences.

The full ISA is located in the appendix of this document.
This ISA may seem unconventional, and differs from most
standardized ISAs that fall cleanly into CISC or RISC cate-
gories. However, by the process of formulating our ISA, we
have learned much about the considerations computer architects
must make when designing an ISA. Our final CR16 ISA was
assembled with a lot of careful thought and effort. The assembly
software was a burdensome aspect of our project, so we are glad
we had these features to develop it intuitively and cleanly.

V. PERIPHERAL INTERFACING

There are two peripherals that our FSS prototype’s firmware
communicates with using the LOADX/STOREX instructions:
the I2C bus and a microsecond counter. The I2C bus simply
consists of two open-drain I/O pins — one for SCL and
one for SDA. These ports use the inout port direction in
SystemVerilog to designate them as being used as both an input
and an output. To create the open-drain configuration for these
pins, the following Verilog code is used:

assign O_SCL = I_SCL_T ? 1’bZ : 1’b0;
assign O_SDA = I_SDA_T ? 1’bZ : 1’b0;

This essentially creates two ground-driven, tri-state buffers with
inverted triggers.

The microsecond counter is simply a clock divider in con-
junction with 48-bit counter. Knowing that our CR16 processor
clock uses our FPGA board’s 50 MHz clock, we can divide that
by 50 to create a clock signal with a period of 1 microsecond.
Then with every pulse of the divided clock signal, a counter
increments by 1.

These two peripherals are SystemVerilog modules that
are instantiated in a another SystemVerilog module entitled
ext_mem. This module maps addresses from the CR16 ex-
ternal memory port to the various external peripheral instantia-
tions, namely: clock_divided_counter and i2c_bus.
When the LOADX/STOREX instructions are decoded in the
CR16 processor, the external memory port addresses into the
peripheral instantiations accordingly so that 16-bit values can be
read or written to directly from our assembly code. This is very
similar to how memory-mapped I/O is done in commercial-
grade microcontrollers and SoCs.

VI. ASSEMBLER

Our CR16 processor project includes an accompanying
custom-built assembler to compile assembly code written in
our specialized ISA. The assembler itself is written in Java and
uses the Gradle build tool for dependency management and
distribution building. A library entitled “JCommander” is used
to handle command-line argument parsing seamlessly. Listing
12 shows the command-line usage of our assembler.

When run, the input file is read into memory and the
code lines are sanitized, meaning that all code comments and
unnecessary whitespace is removed. Comments in our assembly
syntax are delimited using the hashtag symbol (e.g. “#”). Then

macros are indexed and processed. A macro is used to create
a mapping between a string (the key) and another string (the
value). The following shows an example of how a macro is
used in our firmware assembly code to define the upper and
lower 8-bits of the stack pointer:

Initialize the stack pointer at BRAM
address 0x0FFF (which is 2ˆ12 - 1)
‘define STACK_PTR_LOWER 0xFF
‘define STACK_PTR_UPPER 0x0F

Macros are used in several places in our firmware assembly
code as they are primarily used to give names to numerical
constants.

Once macros have been processed, labels are then indexed
and processed. Labels are used to reference arbitrary static
memory addresses, which allows a programmer to declare
named functions and define static memory blocks. Listing
13 following shows an example of how labels are used in
our firmware assembly code. This example listing contains
an .array_copy function implementation that’s prepended
with our “AssemblyDoc” code documentation. Note that the
assembler will compile the JLO .array_copy:loop line
to a branch instruction since the .array_copy:loop label
is within the branch instruction’s displacement range (which
is ±127). Similarly, a CALL instruction will compile to a
CALLD instruction in the event that the given label is within
the CALLD instruction’s displacement range (which is ±2048).
Also note that if a programmer uses a CALL or jump in-
struction and the desired label to call/jump to lies outside
the displacement range of the equivalent displacement in-
struction, then the assembler will force the programmer to
use an “address loading register” with the following syntax:
JLO .far_away_label$r0. In this example, the absolute
memory address of .far_away_label will be loaded in
register r0. This forces the programmer to make a conscience
decision about which register a label address should be loaded
into via the MOVIL (move-immediate for lower 8-bits) and
MOVIU (move-immediate for upper 8-bits) instructions.

Finally, the assembler will map all the instructions to their
machine code equivalent as the CR16 ISA specifies. This
machine code file is written according to the command-line
arguments as shown in Listing 12.

VII. FIRMWARE

The following sections discuss the functionality of our
firmware assembly code. We divided complex functions into
smaller subroutines, allowing for the complexity of our
firmware to be abstracted away piece-by-piece. This makes the
assembly code much easier to read and is good programming
practice.

A. I2C Logic

To interface with the I/O port expander chips via I2C, a
number of subroutines to handle writing and reading to and
from the I2C bus were programmed. Some simple “getter”
and “setter” functions were created for the binary values of
SDA and SCL lines. Then START and STOP conditions were
programmed into separate functions to take control and release
the bus respectively. A function for getting the acknowledge
(ACK) bit from a slave and a function for sending the not-
acknowledge (NACK) bit to a slave were also programmed.
Lastly, functions for reading and writing arbitrary bits on the
bus lines were programmed.

These simpler subroutines are called sequentially in
the .i2c_read_byte and .i2c_write_byte functions.

Usage : a s s e m b l e r [o p t i o n s] <assembly code f i l e pa th>
O p t i o n s :

−d , −−debug
Turns on debug mode .
D e f a u l t : f a l s e

−p , −−max− padding − l i n e
The l i n e number t o which padd ing l i n e s s h o u l d be added t o an o u t p u t
b i n a r y .
D e f a u l t : 0

−v , −−max− padding − l i n e − v a l u e
The d e c i m a l v a l u e o f t h e padd ing l i n e s .
D e f a u l t : 0

−b , −−number − base
The number base o f t h e o u t p u t b i n a r y .
D e f a u l t : HEX
P o s s i b l e Va lues : [BINARY, DECIMAL, HEX]

−o , −− o u t p u t
The o u t p u t b i n a r y f i l e p a t h . D e f a u l t s t o < i n p u t a s sembly f i l e >. d a t .

−s , −− o u t p u t − p r o c e s s e d
True t o w r i t e t h e p r o c e s s e d assembly t o <o u t p u t b i n a r y f i l e
pa th >. p r o c e s s e d . asm .
D e f a u l t : f a l s e

Fig. 12. Command-line usage of CR16 Assembler.

##
Copies t h e a r r a y a t ’ r11 ’ t o ’ r12 ’ wi th l e n g t h ’ r13 ’ .
#
@param r11 − a p o i n t e r t o t h e a r r a y t o copy from
@param r12 − a p o i n t e r t o t h e a r r a y t o copy t o
@param r13 − t h e number o f words t o copy
#
@return vo id
##
. a r r a y c o p y

MOVIL r0 0x00
MOVIU r0 0x00

. a r r a y c o p y : loop

LOAD r5 r11
STORE r12 r5

ADDI r11 1
ADDI r12 1

ADDI r0 1
CMP r0 r13
JLO . a r r a y c o p y : loop

RET

Fig. 13. The “.array copy” function from our firmware assembly code.

These function signatures are shown in Listings 14 and 15
respectively. The argument list, as shown in the function’s
AssemblyDoc, gives a sense of how easily it is to read and write
a byte to an addressable slave on the I2C bus from anywhere in
our firmware assembly code. Note that in our setup, the FPGA
board serves as the I2C bus master and the I/O port expander
ICs serve as the slaves. More information on the I2C protocol
can be found here.

B. Microsecond Counter

The microsecond counter module was added as a distinct
Verilog module. The counter is 48 bits wide, and acts like
a peripheral to the FSS device. We determined this to be a
necessary bit width because 232 microseconds is only about 71
minutes, and the software could misbehave if the counter ever
resets. Since 248 microseconds is about 8.9 years, the counter
should never reset while the device is operating. Because the
counter acts like a peripheral, its 48-bit count is stored in a
set of 3 discrete 16-bit registers which can be loaded into
the processor’s regfile using the LOADX instruction. When the
microsecond counter data is fetched, it can be used to store
timestamps and calculate elapsed time. This is only feasible
if the software can accommodate 48-bit unsigned subtraction.
Thankfully unsigned subtraction and 2’s complement subtrac-
tion are congruent. Therefore, we can use the SUB instruction
to subtract the least significant bits first, and then propagate any
borrows to the next most significant bits. A borrow will never
occur out of the MSB since the time elapsed will usually never
reset to a lower number.

The most significant advantage of this functionality is that
we can implement a helper function in the assembly that
“sleeps” the processor by a certain number of microseconds.
This behavior is imperative to ensure correct protocol behavior
with I2C communication and LED animations.

C. Rotary Encoder Polling

To retrieve the state of the three rotary encoders, the port
expander chip connected to the rotary encoder channel pins
is polled and a decoding function is called to determine its
rotational direction — either clockwise or counter-clockwise.
Our chosen rotary encoders output a quadrature-encoded signal.
Quadrature encoding is performed using two distinct bit values,
where each value represents the state of a channel in the rotary
encoder device. Fig. 16 shows the schematic of our rotary
encoders with a suggested filter circuit. From a high level, the
rotational direction can be determined by the appearance of the
timing diagram for the two distinct signals. Fig. 17 illustrates
how a timing diagram may look when turning a rotary encoder
in the clockwise direction, given that terminal A is the upper
waveform and terminal B is the lower waveform.

The assembly code uses a static memory address in BRAM to
store the previously obtained state of each rotary encoder, and
the “decode” functions works to detect whether or not the rotary
encoder has traversed a whole period of the quadrature output
waveform. If it has, then the control knob has been moved far
enough to turn on or off an LED in the ring display.

D. LED Animations

One of our goals was to interface with the audio codec on
our FPGA boards to generate sound, just as a commercial
music synthesizer would, although, this goal was secondary.
Due to time constraints, we instead implemented some very
cool animations for the LEDs in the ring displays on the
FSS prototype. That includes a start up animation and 5
“idle” animation sequences. The pause/play button on the

FSS was originally intended to pause and play the sound
generated by the audio codec, but is now used to toggle
between the various “idle” animation sequences. Some of these
sequences programatically shift a certain number of 1’s and
0’s into the LED driver shift register with various delays.
Other animation sequences use frame data located in static
memory. These frames are encoded with the values (0 - 19)
of the 3 ring displays and an animation execution function, en-
titled “.execute_animation_sequence” steps through
the frames with a 2 millisecond delay, decoding the frame and
updating the LED driver shift registers accordingly.

E. Business Logic and Final Device Integration
With all of the sophisticated communication and data pro-

cessing abstracted away, the business logic of the main routine
actually becomes quite simple. On initialization, the FSS ring
displays light up with a brief startup animation. When the
animation finishes, the FSS program loads program 1. The
default program values are hard-coded into the firmware in a
static location in memory which is referenced with a label.
Because the FPGA must be reprogrammed every time it is
turned off, we do not yet have a way to allow saved programs
to persist after shutdown, thus the saved program values only
persist throughout program runtime. The firmware then enters
into an infinite loop which integrates all the logic explained
above to poll the state of the inputs from buttons and rotary
encoders, process that data, and push the correct chain of values
into the LED driver shift registers. All of this occurs in a short
time period, so no concurrency or event listening is necessary.
The user receives practically instantaneous feedback to any
stimulus applied to the dials or buttons.

VIII. LESSONS LEARNED

As a team, we feel that we have acquired many skills from the
work we had to do for this project. Some of the most memorable
lessons are learned when we make mistakes, and we would like
to address a number of those lessons. These concepts apply to
the software, electronics, and physical assembly aspects of our
project, as well as our project management skills.

1) Schematic Imperfections: Unfortunately, we added a se-
ries resistor in the wrong place to our push button and
the rotary encoder channel pull-down configurations on
our main PCB. Due to the fact that we were so concerned
about accidentally shorting our I/O port expander chips,
we placed resistors for short-circuit protection instead of
resistors for normal operation. This issue was rectified
easily by soldering through-hole resistors in series to
the push button and rotary encoder channel pull-down
configurations.

2) Common Ground: We neglected one important detail
about I2C when we designed our breakout PCBs — all
masters and slaves on the bus need a common ground.
The GND wire as shown in Figure 4 was added after
the PCBs were fabricated since the I2C requirement of
a common ground was neglected during the schematic
development process. This issue was easily rectified by
soldering a wire to the OUT- pin of the buck converter
which could then be connected to the FPGA board’s
ground pin on the PMOD pin header.

3) Rotary Encoder Filter Circuit: The datasheet for our
rotary encoders contains a schematic for a suggested filter
circuit, as seen in Fig. 16. We didn’t implement this filter
circuit under the impression that, due to our sampling
period, the rotary encoder channels would be “pseudo-
debounced.” During the hardware debugging process

https://en.wikipedia.org/wiki/I%C2%B2C

##
R e q u e s t s t o r e a d a b y t e from a s l a v e on t h e I2C bus .
#
@param r11 − t h e 7− b i t a d d r e s s o f t h e I2C s l a v e
#
@return r10 − t h e b y t e r e a d from t h e I2C bus o r ’0 x0100 ’ i f a b y t e c o u l d n o t be r e a d
##
. i 2 c r e a d b y t e

Fig. 14. The “.i2c read byte” function signature from our firmware assembly code.

##
R e q u e s t s t o w r i t e a b y t e t o a s l a v e on t h e I2C bus .
#
@param r11 − t h e 7− b i t a d d r e s s o f t h e I2C s l a v e
@param r12 − t h e b y t e t o w r i t e t o t h e I2C s l a v e
#
@return r10 − 1 i f s u c c e s s f u l , 0 i f b y t e c o u l d n o t be w r i t t e n
##
. i 2 c w r i t e b y t e

Fig. 15. The “.i2c write byte” function signature from our firmware assembly code.

Fig. 16. Schematic for PEC11R Series rotary encoders as seen in [3]

Fig. 17. Waveform for a quadrature-encoded signal as seen in [3]

however, we observed some noise around the channel
transition thresholds, and we believe that a combination of
the filter circuit and software debouncing would alleviate
this issue.

4) Water Jet Issues: Our first design was to utilize an
anodized aluminum plate for the top panel of the device.
We contracted a company here in the Salt Lake Valley
to use a water jet to route out the windows for the LED
lights and push buttons. When we received the plates,
there was evidence of a low-quality water jet job, with
imprecise cuts and extremely rough edges. This was a
disappointing waste of time, money, and materials. To
combat this, we could have invested time in visiting the

facility to view samples of the water jet work on anodized
aluminum before committing to have them do our work.

5) Wood is an Unreliable Material: Wood dimensions are
not always as advertised depending on the climate and
humidity of the supplier. In our particular application, the
wood layers were too thin, and bowing made the assembly
process unnecessarily difficult. Real wood veneer was
also quite fragile, though the aesthetic was pleasing.

6) Acrylic is an Higher-Cost Material: To compensate for
the challenges we faced with wood, we built the walls
of the housing using layers of laser-cut acrylic sheets.
This resulted in significant material waste, and was much
more expensive than wood. In retrospect, something that
could be 3D modelled and cast out of plastic would
be much cheaper and more realistic for a preliminary
prototype design, though the surface acrylic panelling was
professional and sleek.

7) Time Management: Many aspects of this project pre-
sented significant pressure for our group because of the
ambitious nature of our project. We underestimated the
amount of time we would spend testing, debugging,
and correcting our CR16 processor and other software
elements. As a rule of thumb, we should have doubled
the time that we initially thought it would take to perform
any task.

8) Foam Buffers for Structural Support: The bottom panels
make direct contact with foam buffers in the corners near
the assembly screws, and this detracts from the rigidity
of the rest of the design. The bottom plate can be pressed
up into the rest of the device. To prevent this, the bottom
plate should make direct contact with a rigid corner
material and fit tightly. This issue would be rectified in a
future prototype.

IX. VIDEOS

We wanted to create a professional video in the form of
a product advertisement showing the beauty we captured in
the FSS prototype’s design. That video is available here. Addi-
tionally, a demo video showing the basic usage and functional
overview of the FSS prototype is available here.

https://jacobpeterson.net/uofu-ece-3710/ad-video-redirect.html
https://jacobpeterson.net/uofu-ece-3710/demo-video-redirect.html

X. ABOUT THE TEAM

There were many tasks involved in creating a functioning
synthesizer, and due to this there was much overlap in the
division of labor. To list a few:

• Concept Art
• Assembly Programming
• SystemVerilog Programming
• Test Programs
• Demo Programs
• PCB Design
• PCB Assembly and Reflow
• Assembler
• External Housing (Construction)
• External Housing (Design)
• Breakout Box Construction
Jacob and Nate covered much of the software, namely writing

the FSS prototype Verilog modules, the fss.asm assembly
source code, creating demo programs, and implementing the
core functionality of the synthesizer. They also worked together
to physically assemble, reflow, and test the PCBs, and design
the schematic for the breakout box PCB.

Jacob was also responsible for the peripheral interfacing —
writing the I2C procedure in assembly — and writing the
assembler. He worked with Brady to design the Main FSS
Board schematic.

Brady conceptualized the idea of a fully synchronized syn-
thesizer and created all of the concept art. He also had a hand in
creating test programs, designing the PCB, and designing and
constructing the external housing. He and Jacob selected all of
the device materials and acquired datasheets in their efforts to
design the PCB and physical device housing.

Isabella assisted in creating test programs and constructing
the external housing. She also created the synthesizer’s breakout
box and was responsible for modeling components in Solid-
Works before 3D printing.

XI. CONCLUSION AND FUTURE WORK

Overall the final synthesizer came together well and the
program reflects most our initial requirements. We were able to
design and create a machine that properly updates parameters
based on user inputs and can save those into memory to be
loaded again when needed later. The final physical product is
sleek, fully functional, and is simple to use.

In this version of our synthesizer, we did not have time to
work with the audio codec on the FPGA. In a future imple-
mentation we hope to get this working so that our synthesizer
may play music and have the three dials correspond to audio
settings that adjust the sound of the music playing. Beyond
this, we would also like to add more inputs, than just the three
simple dials. Other commercially available synthesizers have
numerous knobs and switches that give users extensive control
over the sound the synthesizer makes, and three knobs simply
isn’t enough to do this.

With these changes, our team could create a high quality
synthesizer that has just as much form as function.

REFERENCES

[1] Github, Github Repository for “CompactRISC16”, Fall
2021, Online.

[2] Github, Github Repository for “FSSPrototype”, Fall 2021,
Online.

[3] PEC11R Series 12mm Incremental Encoder, Bourns,
PEC11R-4015F-N0024, Online.

[4] DE1-SoC User Manual, TerAsic Technologies, April
20216, Online.

https://github.com/Petersoj/CompactRISC16
https://github.com/Petersoj/FSSPrototype
https://www.mouser.com/ProductDetail/Bourns/PEC11R-4015F-N0024?qs=Zq5ylnUbLm5obMMbrbYrpA%3D%3D
https://www.intel.com/content/dam/www/programmable/us/en/portal/dsn/42/doc-us-dsnbk-42-1004282204-de1-soc-user-manual.pdf

Appendix

Custom CompactRISC16 (CR16) Instruction Set Architecture (ISA)

Computer Design Laboratory ECE 3710 Group 2
Fall 2021

The University of Utah

Table 1: Assembly Instructions and Machine Encodings

ImmHi/

Opcode ImmLo/

Opcode Rdest Ext Rsrc Clock

Mnemonic Operands Function [15:12] [11:8] [7:4] [3:0] Notes Cycles

ADD Rdest, Rsrc Rdest = Rdest + Rsrc 0000 Rdest 0000 Rsrc 3

ADDI Rdest, Imm Rdest = Rdest + Imm 0001 Rdest ImmHi ImmLo Sign extended Imm 3

ADDC Rdest, Rsrc Rdest = Rdest + Rsrc + 1 0000 Rdest 0001 Rsrc 3

ADDCI Rdest, Imm Rdest = Rdest + Imm + 1 0010 Rdest ImmHi ImmLo Sign extended Imm 3

MUL Rdest, Rsrc Rdest = Rdest * Rsrc 0000 Rdest 0010 Rsrc 3

MULI Rdest, Imm Rdest = Rdest * Imm 0011 Rdest ImmHi ImmLo Sign extended Imm 3

SUB Rdest, Rsrc Rdest = Rdest - Rsrc 0000 Rdest 0011 Rsrc 3

SUBI Rdest, Imm Rdest = Rdest - Imm 0100 Rdest ImmHi ImmLo Sign extended Imm 3

CMP Rdest, Rsrc Rdest - Rsrc 0000 Rdest 0100 Rsrc 3

CMPI Rdest, Imm Rdest - Imm 0101 Rdest ImmHi ImmLo Sign extended Imm 3

NOT Rdest, Rsrc Rdest = !Rsrc 0000 Rdest 0101 Rsrc 3

NOTI Rdest, Imm Rdest = !Imm 0110 Rdest ImmHi ImmLo Zero extended Imm 3

AND Rdest, Rsrc Rdest = Rdest & Rsrc 0000 Rdest 0110 Rsrc 3

ANDI Rdest, Imm Rdest = Rdest & Imm 0111 Rdest ImmHi ImmLo Zero extended Imm 3

OR Rdest, Rsrc Rdest = Rdest | Rsrc 0000 Rdest 0111 Rsrc 3

ORI Rdest, Imm Rdest = Rdest | Imm 1000 Rdest ImmHi ImmLo Zero extended Imm 3

XOR Rdest, Rsrc Rdest = Rdest ^ Rsrc 0000 Rdest 1000 Rsrc 3

XORI Rdest, Imm Rdest = Rdest ^ Imm 1001 Rdest ImmHi ImmLo Zero extended Imm 3

LSH Rdest, Ramount Rdest = Rdest << Ramount 0000 Rdest 1001 Ramount 0 ≤ Ramount ≤ 15
since registers are only
16-bits

3

LSHI Rdest, ImmLo Rdest = Rdest << Imm 0000 Rdest 1010 ImmLo 0 ≤ ImmLo ≤ 15 3

RSH Rdest, Ramount Rdest = Rdest >> Ramount 0000 Rdest 1011 Ramount 0 ≤ Ramount ≤ 15 3

RSHI Rdest, ImmLo Rdest = Rdest >> Imm 0000 Rdest 1100 ImmLo 0 ≤ ImmLo ≤ 15 3

ALSH Rdest, Ramount Rdest = Rdest <<< Ramount 0000 Rdest 1101 Ramount 0 ≤ Ramount ≤ 15 3

ALSHI Rdest, ImmLo Rdest = Rdest <<< Imm 0000 Rdest 1110 ImmLo 0 ≤ ImmLo ≤ 15 3

ARSH Rdest, Ramount Rdest = Rdest >>> Ramount 0000 Rdest 1111 Ramount 0 ≤ Ramount ≤ 15 3

ARSHI Rdest, Imm Rdest = Rdest >>> Imm 1111 Rdest 0000 ImmLo 0 ≤ ImmLo ≤ 15 3

MOV Rdest, Rsrc Rdest = Rsrc 1111 Rdest 0001 Rsrc Copies Rsrc into Rdest 3

MOVIL Rdest, Lower Imm Rdest[7:0] = Imm 1010 Rdest ImmHi ImmLo Zero extended Imm,
moves immediate value
into lower bits of Rdest

3

MOVIU Rdest, Upper Imm Rdest[15:8] = Imm 1011 Rdest ImmHi ImmLo Zero padded Imm,
moves immediate value
into upper bits of Rdest

3

J[condition] Rtarget if [condition]:

PC = Rtarget

1111 condition 0010 Rtarget [condition] bit patterns
are in Table 2.

T: 5
F: 3

B[condition] Displacement Imm if [condition]:

PC += Imm + 1

1100 condition ImmHi ImmLo [condition] bit patterns
are in Table 2. Imme-
diate is sign extended
2’s complement for pro-
gram counter/address
displacement.

T: 4
F: 3

CALL Rtarget Pushes PC + 1 onto stack,

PC = Rtarget

1111 xxxx 0011 Rtarget Used for nested subrou-
tines

5

CALLD Displacement Imm Pushes PC + 1 onto stack,

PC += Imm + 1

1101 ImmHi ImmMid ImmLo Used for nested sub-
routines. Immediate is
sign extended 2’s com-
plement for program
counter/address dis-
placement.

4

RET Pops top of stack into PC 1111 xxxx 0100 xxxx Used to return from
nested subroutine

6

LPC Rdest Rdest = PC 1111 Rdest 0101 xxxx Sets Rdest to PC 3

LSF Rdest Rdest = status flags 1111 Rdest 0110 xxxx Sets Rdest to the cur-
rent status flags (zero
extended)

3

SSF Rsrc Status flags = Rsrc[4:0] 1111 xxxx 0111 Rsrc Sets the current status
flags to Rsrc[4:0]

3

PUSH Rsrc Main memory value at rsp

= Rsrc, rsp--

1111 xxxx 1000 Rsrc Pushes Rsrc onto top of
stack

4

POP Rdest rsp++, Rdest = Main

memory value at rsp

1111 Rdest 1001 xxxx Pops top of stack into
Rdest

4

LOAD Rdest, Raddr Rdest = Main memory value

at Raddr

1111 Rdest 1010 Raddr Used to load data at
Raddr into Rdest from
main memory

4

STORE Raddr, Rsrc Main memory value at

Raddr = Rsrc

1111 Raddr 1011 Rsrc Used to store data at
Raddr from Rsrc to
main memory

4

LOADX Rdest, Raddr Rdest = External memory

at Raddr

1111 Rdest 1100 Raddr Used to load data at
Raddr into Rdest from
external/peripheral
memory/registers

4

STOREX Raddr, Rsrc External memory value at

Raddr = Rsrc

1111 Raddr 1101 Rsrc Used to store data at
Raddr from Rsrc to
external/peripheral
memory/registers

4

NOP No Operation Pseudo instruction for:
OR R0, R0

3

Note that during the execution cycle of an instruction, PC (the “Program Counter”) always points to the next instruction (e.g. PC + 1). As a
result of this, B[condition] and CALLD will displace the current PC by Imm + 1. This can be thought of as executing the “next instruction” after
PC displacement.

Table 2: Bit Patterns of Conditions for B[condition] and J[condition]

Mnemonic Bit Pattern Description Function Status Flags

EQ 0000 Equal Rsrc == Rdest Z=1

NE 0001 Not Equal Rsrc != Rdest Z=0

CS 0010 Carry Set C == 1 C=1

CC 0011 Carry Clear C == 0 C=0

FS 0100 Flag Set F == 1 F=1

FC 0101 Flag Clear F == 0 F=0

LT 0110 Less Than signed: Rdest < Rsrc N=0 and Z=0

LE 0111 Less than or Equal signed: Rdest <= Rsrc N=0

LO 1000 Lower than unsigned: Rdest < Rsrc L=0 and Z=0

LS 1001 Lower than or Same as unsigned: Rdest <= Rsrc L=0

GT 1010 Greater Than signed: Rdest > Rsrc N=1

GE 1011 Greater than or Equal signed: Rdest >= Rsrc N=1 or Z=1

HI 1100 Higher than unsigned: Rdest > Rsrc L=1

HS 1101 Higher than or Same as unsigned: Rdest >= Rsrc L=1 or Z=1

UC 1110 Unconditional N/A

1111 Never Jump N/A

Table 3: Register Naming and Conventions

Register Index Register Name Meaning

4’d15 rsp Stack pointer with an address starting at
0xFFFF (216) and grows downward towards
dynamically allocated memory

4’d14 r14 4th subroutine argument

4’d13 r13 3rd subroutine argument

4’d12 r12 2nd subroutine argument

4’d11 r11 1st subroutine argument

4’d10 r10 Return value of subroutine

4’d9 r9 Caller-owned

4’d8 r8 Caller-owned

4’d7 r7 Caller-owned

4’d6 r6 Caller-owned

4’d5 r5 Callee-owned

4’d4 r4 Callee-owned

4’d3 r3 Callee-owned

4’d2 r2 Callee-owned

4’d1 r1 Callee-owned

4’d0 r0 Callee-owned

	Introduction
	Overview
	Hardware
	FPGA Board
	Breakout Box
	FSS PCB
	FSS Housing

	CR16 Processor
	Peripheral Interfacing
	Assembler
	Firmware
	I CC Logic
	Microsecond Counter
	Rotary Encoder Polling
	LED Animations
	Business Logic and Final Device Integration

	Lessons Learned
	Videos
	About the Team
	Conclusion and Future Work

